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ABSTRACT 

Part I - The Uniform Beam 

The equation of motion and boundary conditions for uniform beams 
carrying constant end thrust and linearly varying axial load are derived from 
Hamilton's principle. Previous studies on the determination of natural fre- 
quencies of beams with varying axial loads are reviewed. The eigenvalue 
problem is formulated in a variational form to facilitate approximate solutions. 

Part II - The Rectangular Plate 

The equation of motion of uniform plates carrying in-plane loads is 
derived from Hamilton's principle. The eigenvalue problem for a rectangular 
plate carrying a linearly varying in-plane load parallel to one side is trans- 
formed into that of a uniform beam subjected to a uniformly distributed axial 
load whenever the sides of the plate parallel to the loading are simply sup- 
ported. The eigenvalues for the beam are presently being computed and will be 
tabulated in a later report. 
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PART I -THE UNIFORMBEAM 



LIST OF SYMBOLS 

Differential Operator of Loaded Beams (IV - 19)-k- 

Flexural Rigidity 

Function of Time (IV - 1) 

Gravitational Acceleration 

Classes of Functions Admissable for the Variational 
Principles (IV - 16), (IV - 23) 

Length of the Beam 

Constant End Thrust 

Kinetic Energy (III - 2) 

Strain Energy of Bending (III - 3) 

Function 

Total Potential Energy 

Function 

Potential Energy of the External Forces (III - 4) 

Axial Coordinate 

Lateral Deflection 

Distributed Axial Load Parameter (IV - 4) 

Critical Value of Axial Load Parameter 

Ratio of End Load to Total Distributed Load (IV - 4) 

*Numbers in parentheses refer to the equations in the text 
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Symbol for Variation 

j-th Eigenvalue 

Density 

Non-dimensional Axial Variable 

Function of x (IV -1) 

Eigenfunction 

Subscripts (Integers) 

Separation constant (IV -2) 
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1. INTRODUCTION 

The trend in the development of rocket vehicles appears to be in the 
direction of larger thrusts and more flexible structures to achieve higher 
payloads. Corresponding to this trend the significance of the longitudinal 
inertia forces due to the thrust on the vibration and stability character- 
istics of the vehicle and its components becomes more important. 

Recent studies(1'2'3)* indicates that a modern rocket is so stiff 
that the acceleration required to make it elastically unstable is at 
least 5 g's less than the maximum acceleration experienced. Thus, there 
is no immediate,danger of present rockets becoming elastically unstable, 
although it is possible that future rocket vehicles, particularly solid- 
fueled boosters, will reach higher accelerations, or that more flexible 
structures will be designed for which the problem will exist. The danger, 
however, exists that components of the vehicle or of the payload may be 
flexible enough to have critical accelerations in the neighborhood of 
those presently attained. Furthermore, the thrust acting on a structure 
tends to reduce its natural frequencies(4) which may then fall within the 
spectrum of excitations experienced. Hence, as further increases in 
payload are required, closer determination of system characteristics 
will be needed. 

The purpose of this report is to review the studies that have been 
made to date on the effect of the linearly varying axial load created 
by the thrust on the natural frequencies and stability characteristics 
of uniform beams, and to present a derivation of the corresponding 
eigenvalue problem. 

II. PREVIOUS STUDIES 

The literature abounds in determinations of natural frequencies and 
buckling loads for uniform beams subjected to constant end loads. See, 
for instance, references 5 and 6. HoQever, the case where the structure 
is subjected to a linearly varying axial load has received little consid- 
eration, probably because of the difficulties involved in obtaining 
solutions to differential equations with variable coefficients. 

McKinney(7) considered single span and multiple span beams with 
distributed axial load and constant end load. He obtained approximations 
to the fundamental frequency by the Rayleigh-Ritz method, and by the 
perturbation method for small values of the axial load. He gave some 
numerical results for a simply supported single-span beam column, for 

*Parenthetical references placed superior to the line of the text refer 
to the bibliography. 



a continuous double-span beam column pinned at either two or three sup- 
ports, and for a cantilever beam column. In every case, the axial load 
was taken as the weight of the beam. The two-terms perturbation solution 
and the Rayleigh-Ritz solution for trial functions consisting of two and 
three modes of the unloaded beams are compared for the simply supported 
beam and for the cantilever beam. In every case, the perturbation solution 
gave a frequency larger than that obtained by the Rayleigh-Ritz method. 

Seide(') considered the effect of a constant longitudinal acceleration 
on the transverse vibrations of uniform free-free beams. He obtained 
natural frequency approximations by using .linear combinations of the mode 
shapes of the free-free beam without axial loading in the Rayleigh-Ritz 
method. He found that a reasonable approximation to the variation of the 
frequencies with the axial load could be expressed by 

[ 1 2/ 3 
f- 1-P 

i,,- P cm 

where f is the frequency of vibration 

f th on is the n- mode frequency of the beam without axial load 

P is the end load producing the acceleration 

P cm is the n th mode critical end load - 

This relation is said to give a good approximation for the first 
three modes and possibly the fourth mode. Some results are also given 
as the effect of tension on the first two frequencies. As expected, the 
frequencies increase with the tension. 

Tu and Handelman (8) considered the effect of a distributed axial load 
on the fundamental frequency of a uniform cantilever beam carrying a 
constant axial load at its free end. They obtained approximate solutions 
by expanding the ei enfunctions and eigenvalues in power series of a 

5 loading parameter y : p is the density 

\$= .PgAL 
A is the cross sectional area 

where : 
EI 

L is the length of the beam 
EI is the flexual rigidity 

For small values y2 
for large values of y2 

they used a standard perturbation technique, and 
a singular perturbation method while retaining three 

terms in the expansions. They also obtained upper bounds by using "simple 
polynominals" in the Rayleigh quotient and Schwarz iterations, and lower 
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bounds by Southweli's method and Schwarz iterations. Their numerical 
results are for ratios of end load to total distributed load of -2 
(beams in tensions), -.25 (beam partially in tension and partially in 
compression), 
various 

0 (beams in compresgion) and 1 (beams in compression) for 
values of the p 

fairly good for small y 1 
rameter y . The perturbation solutions are 
when the beam is in compression although they 

are not consistently between the upper and lower bounds. 
of y2 

For large values 
the singular perturbation approximates the eigenvalue from belowin 

the given numerical results. The Schwarz iterations give very narrow 
bounds for smallY2 but the gaps become quite large as y'2 increases. 

Beal(3)gave some graphical results on the effect of axial thrusts 
on the natural frequencies of a uniform free-free beam. The case he 
considered is, however, different from the one considered by Seide(2) 
in that the thrust in his problem remains tangent to the beam whereas in 
Seide's problem it has a fixed line of action. Thus Beal's problem 
is not self-adjoint whereas Seide's is. Beal's method of attack consists 
in using linear combinations of the mode shapes of the free-free beam 
without axial load in Galerkin's method. 

Glaser(') considered also a free-free beam with end thrust remain- 
ing tangent to the beam. His method of attack is to represent the beam 
as a lumped-mass system. He gave graphical results on the effect of the 
axial thrust on the first three frequencies of Bernoulli-Euler and 
Timoshenko beams for various distributions of the point masses. 

Several authors have considered the problem of the elastic stability 
of uniform beams with uniformly distributed axial load, and obtained 
exact solutions because they were able to transform the governin 
ential equation into known equations. Timoshenko and Gere(6pp' "'fffer- 
present the solution of the buckling problem for a cantilever beam- 
column loaded by its own weight. The lowest buckling load is obtained 
in terms of Bessel functions of the first kind of orders l/3 and -l/3. 
A list of references on the problem, going back to Euler, i also included 

?z ~~~~rPPo~ p* 125) 
lem is solved in the same fash'on by McLachlan 

. Tyler and Rouleaut") have considIz:dpthi7) 
problem of buckling for a simply supported beam which may be partly in 
tension and partly in compression. Their solution is in terms of Airy 
functions which may be related .to Bessel functions of orders l/3 and -l/3. 

Przemieniecki (12) considered the problem for various end conditions 
and gave stability criteria in a series of curves relating the maximum 
compressive axial 'load with the maximum distributive load. 

3 



BealC3) and Glaser(') have considered the problem of buckling for the 
free-free beam by the methods described above. Their analyses present 
the interesting point that, since their systems are non-conservative, the 
dynamic stability criterion must be applied, by which buckling may occur 
by either the coalescence of adjacent frequencies or by the reduction of 
a frequency to zero. 

In summary, one finds several solutions to the buckling problem, but 
only a few for the determination of the natural frequencies of beams with 
uniformly distributed axial load. Most of the approximations appearing 
in the literature are upper bounds to the true solutions. The closeness 
of theseapproximations to the true solutions cannot be established with- 
out the knowledge of lower bounds, unless they can be compared with re- 
sults from experiments. 

In the following section, the equation of motion is derived from 
Hamilton's principle. This method has the advantage over the strength 
of materials approach that it yields at the same time the natural 
boundary conditions of importance in the variational characterization 
of the eigenvalues. This characterization is presented in section IV. 
It is the basis for upper and lower bounds carputations of eigenvalues. 

III. EQUATION OF MOTION OF BEAMS WITH 
UNIFORMLY DISTRIBUTED AXIAL LOAD 

We consider a Bernoulli-Euler beam of uniform flexural rigidity EI, 
subjected to a constant end load Pl and a uniformly distributed axial 
load given per unit of length. 
acting in compression. 

Pl and w are taken to be positive when 
The loading system is illustrated in figure 1. 

Figure 1. Loading System 
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The motion of the beam is governed by Hamilton's principle which is 
formally expressed by 

(III-l) 

where T represents the kinetic energy, and V the potential energy of the 
system. T is given by 

(111-2) 

where p denotes the material's density and y is the beam's lateral de- 
flection. The potential energy of the system may be decomposed into U, 
the potential energy of the internal forces, given by 

-u =; El 

and W, the potential energy of the external forces, given by 

(III-Y‘, 

(111-4) 

U is the strain energy of bending, and W the potential energy of the 
axial loads. Substitution of T and V into (III-l) yields, after carrying 
the variation under the integral sign and integration by parts, that the 
motion must be such that 

(111-S) 
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This equation holds for arbitrary variations 6~. Choosing 6y and its 
derivative to vanish at the end points for any time t, but to be arbitrary 
within the domain, the following Euler equation results from the varia- 
tional principle: 

(111-6) 

Removal of the restriction on dy and its derivative yeilds, as necessary 
conditions for the vanishing of the variation of (III-l), the following 
natural boundary conditions: 

(111-7) 

The motion of the beam is therefore governed by equation (111-6) and 
boundary conditions appropriate to the type of end support. At a free 
end, the deflection and its derivative with respect to x are arbitrary 
which from (III-S), indicates that all the boundary conditions are 
natural, ie., s Y - =o \ 

4%' I 
(111-8) 

At a simply supported end, the deflection must vanish and its derivative 
is arbitrary. Hence, the following boundary conditions apply: 

y=o (prescribed boundary condition)* 

at a simply supported end x111-9) 

(natural boundary condition) 

*The prescribed boundary conditions are also called essential, or principal, 
or stable boundary conditions, while the natural boundary conditions are 
sometimes called unstable. 



At the clamped end, both the deflection and its derivative must vanish. 
Hence, the following are the appropriate boundary conditions: 

y=o (prescribed boundary condition) 

at a clamped end. (111-10) 

a% -0 
.s - 

(prescribed boundary condition) 

Before leaving this section, it should be noted that the equation 
derived above is based on the small deflection theory, by which it is 
admissible to consider that the axial loads remain constant in magnitude 
during the beam's motion, and that the supports are free to slide in the 
axial direction. If these assumptions are not made, the equation 
involved is no longer linear*. 

IV. THE EIGENVALUE PROBLEM 

The eigenvalue problem is obtained by separating the variables x 
and t, ie by looking for solutions to (111-6) of the form 

(IV-l) 

Substitution of this function in (111-6) yields the pair of equations 

where y 4 is the separation constant. 

(IV-2) 

(IV-3) 

*For some examples of systems with fixed supports see references 13 and 
14. 



Introduction of the non-dimensional variable c= 2 , and of the parameters 

d LJJ = 
El 

transforms (IV-3) into 

and the boundarv conditions into 

ii) v-0 EL, 
' df 

iii) 
Y =o , ch 

z=O 

(IV-4) 

(IV-S) 

(IV-6) 

at a simply supported end(IV-7) 

at a clamped end (IV-8) 

In view of the definition of the parameter P , it is clear that for 
P given compressive distributed load w , the following cases may occur: 

1) p,O, the beam is entirely in compression 

2) -l<p<O, the beam is partly in tension and partly in compression 

3) @S-l, the beam is entirely in tension since the tensile end 
load Pl is larger than the total distributed load 

In the last case, the problem of elastic stability does not exist. 

The determination of the mode shapes and natural frequencies involves 
the solutionof the differential engenvalue problem specified by (IV-S) 
subject to the boundary conditions appropriate for the type of end con- 
dition. We note that (IV-S) is a linear differential equation with a 
variable coefficient for which exact solutions are very difficult to 
obtain.* It is then in order to consider approximation techniques. If 
the problem is considered in its differential form, one can use pertuba- 
tion techniques, but it is then difficult to state in which direction 

*In fact, as early as 1932, Meyer zur Capellen considered a similar 
equation and stated that it is impossible to find solutions in terms 
of "ordinary I" functions. 



the error lies. A more fruitful approach is to consider the problem 
in a variational form, whenever possible, and to obtain approximate 
solutions to the variational problem.* As is well known, a variational 
principle can always be constructed from a self-adjoint operator in such 
a way that the corresponding Euler equation is the given differential 
equation. To establish the character of our operator, we introduce the 
following notation: let A denote the differential operator in (IV-S), ie 

(IV-9) 

and let&v> denote the inner product between two functions u and v , 
where 

We consider the inner product 

(IV-lo) 

(IV-11) 

defined for any two functions u and v of class ~4 . By two integrations 
by parts, it is transformedinto 

*For details, see for instance references 16, 17, 18 and 20. 



Further integration by parts yields 

(lv-13) 

When A operates over the classes of functions satisfying the conditions 
given by (IV-6), or (IV-7), or (IV-8), the boundary term in (IV-13) 
vanishes, and leaves 

(IV-14) 

which indicates that over those classes A is self-adjoint. 

The problem is therefore self-adjoint for free, clamped, or simply 
supported end conditions, as well as combinations of these, and in each 
case the eigenfunctions corresponding to distinct eigenvalues are mutually 
orthogonal.* 

Before going into the variational formulationof the eigenvalues of A, 
we consider the related problem of the elastic stability of the beam 
as it yields some insight in the nature of the operator A. By setting 1 
equal to zero in (IV-S) we obtain 

(lv-15) 

along with the same boundary conditions as before. The last approach is 

*See reference 19 for a discussion on the methods of solution of stability 
problems. 
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satisfactory because the system is conservative which implies that buckling 
occurs whenever the loads are such that the natural frequencies become 
zero. 

For pr-1 , the beam is entirely in tension, and no value of the para- 
meter cy exist that will make it elastically unstable. For ?>-I, the 
beam is either partly or entirely in compression, and there may exist 
discrete values of CY for which (IV-15) has solutions. The smallest 
of these, a, is the critical axial load. It may be characterized 
by the folhwing variational principle:* 

whereKh is the class of admissible functions p satisfying 
ing conditions: 

1)kgatisfies the prescribed b0undar.y conditions 

2) d*u is square integrable. 

3) 

To the smallest eigenvaluecu there corresponds in K- 
for which 

or 

b 

(lV-16) 

the follow- 

(IV-17) 

a function 

(lv-18) 

(lv-19) 

*See for instance references 17, 18, and 20. 
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For any other function VE.K different from zero, 
b 

and for any 0 5 CY 5&c, 

(IV-20) 

(IV-21) 

Now, the lowest eigenvalue of A can be characterized by the 
minimum principle.* 

uk < hfi> A&k 

where K is the class of functions constituting the field of definition 
of the operator A and, hence, satisfying both the prescribed and the 
natural boundary conditions. The minimum principle can also be written 
as 

XI= v&l (lV-23) 

where Kv is the class of admissable functions required to satisfy only 
the prescribed boundary conditions.* 

We note that since Kbis a subclass of Kv, for all 
following inequality is satisfied for UCKV: 

Oicr5% the 

where the equality sign holds for u = o only. 

The operator A is therefore positive definite. 

*This function is known as Rayleigh's quotient. 

(IV-24) 

**In the terminology of Mikhlin, ref. 20, they are the functions with 
finite energy since the numerator of the Rayleigh quotient corresponds 
to the potential energy of the system. 
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The other eigenvalues of A may be characterized by either the 
recursive characterization * or by Courant's maximum-minimum characteriza- 
tion.* 

1.n the latter form, thej-th eigenvalue of A is given by 

where + and ui belong to Kv. 

In resume/if p is such that buckling may occur, there exists a 
critical value of the distributed axial load parameters, Q~, for 
which the beam is unstable and potential energy is equal to zero. For 
any value of Q- less than c, the potential energy is positive, and the 
beam has discrete natural frequencies whose square are proportional to 
the eigenvalues of the operator A. These eigenvalues are assumed to be 
ordered in the non-decreasing sequence: 

o< Al5 h2SX35' l - - (IV-26) 

The eigenfunctions corresponding to distinct eigenvalues are mutually 
orthogonal, and correspand to the mode shapes of the beam. For a given 
value of p , as a increases the denominator of the Rayleigh quotient 
decreases and eigenvalues decrease. Buckling occurs when a becomes 
equal to a c ' for which the first eigenvalue goes to zero. 

The problem is now transformed into obtaining solutions to the varia- 
tional principle (IV-25). 

V. CONCLUDING REMARKS 

The study of the literature indicates that an bxact solution to 
the determination of the eigenvalues of uniform beams with linearly 
varying axial load is extremely difficult. Most of the studies conducted 
furnish upper bounds to the true solutions. In order to facilitate 
obtaining upper and lower bounds to the eigenvalues, the equation of 
motion and the boundary conditions have been derived, and the eigenvalue 
problem has been cast in a variational form. 

*See for instance reference 16 Chapter III. 
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PART II - THE RECTANGULAR PLATE 



LIST OF SYMBOLS 

G.,b Dimensions of a rectangular plate 

o,.& 
\2(1-k-1 

Flexural rigidity of a plate 

E Modulus of elasticity 

4 co Function of time (25)* 

% Acceleration of gravity 

nn Bending moment 

Mnt Twisting moment 

m Density per unit area 

s*,q,u¶) stress resultants (3) 

Unit normal vector 

uniform pressure 

Shearing force 

Lateral load 

Coordinate along plate boundary 

Kinetic energy (6) 

Tangent unit vector 

Potential energy (5) 

Lateral deflection 

Body face components (4) 

Coordinates 

Loading parameter (31) 

Loading parameter (31) 

Variation symbol 

Eigenvalue, square of natural frequency (26) 

Eigenvalue (31) 

Mode shape (25) 

Function of x (28) 

Function of y (28) 

Nondimensional coordinate (31) 

Stress components 

First stress invariant 

Angle between fi and r axis 

*Numbers in parentheses in this section refer to the equations. 
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I. INTRODUCTION 

Structures subjected to accelerations develop inertia forces which tend 
to reduce their natural frequencies. This phenomenon may be of concern in 
the design of rocket components as higher payloads are required and higher 
accelerations attained. For instance, when its acceleration has a component 
in the plane of a plate, the plate develops in-plane loads which must be carried 
in addition to any external loads. This produces an alteration in the natural 
frequencies which may then fall within the spectrum of excitations. The problem 
of the determination of the natural frequencies and buckling loads of plates with 
in-plane loads is a difficult one. For constant in-plane loads, some solutions 
appear in the literature. See for instance references:k( 1) through(h) rectang- 
ular plates, (5)for a triangular plate, (6)for a circular plate, and in particular 
reference(v)wh contains an extensive bibliography. For varying in-plane 
loads, however, few solutions are available. References (i’)and(g)present solu- 
tions for the buckling problem of rectangular plates. 

The object of this report is to derive the equation of motion of plates with 
in-plane loads and to show that in special cases the eigenvalue problem reduces 
to that of a beam with linearly varying axial load which was considered in a 
previous report( 111 

CParenthetical references superior to the line of the text refer to the bibliography. 
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II. EQUATION OF MOTION OF A UNIFORM PLATE WITH IN-PLANE LOADS 

Consider a rectangular plate having uniform thickness, h, small in com- 
parison to its other dimensions, a and b. Under the small deflection assump- 
tions, the middle plane of the plate does not change during the motion. This 
stress distribution is obtained by solving the plane stress problem governed by 
the equilibrium equations : 

and the compatibility equations in terms of stresses 

(1) 

(2) 

where 

20 



The in-plane loads per unit length are taken as the stress resultants defined by 

and the body force components per unit area are defined by 

(3) 

(4) 

The potential energy of the system consists of the strain energy due to bending, 
Vl, the work done by the in-plane loads, V2, and the energy, V3, due to the 
external normal forces, boundary forces, and bending moment on the boundary, 

v is given by 

(5) 

where w denotes the lateral deflection, D the flexural rigidity, 9 the lateral 
load, M, the distributed bending moment .along the boundary II’ , and aa -a&t 
the transverse force along the boundary. 2s 

21 



The notation and sign convention are the same as those used’by Timoshenko and 
(101 Woinowsky-Krieger . Positive moments and shears are as shown in Figure 1. 

----- -% 

Figure 1 

NOTATION AND POSITIVE ORIENTATION OF MOMENTS AND SHEARS 

The kinetic energy of the plate is given by 

where m denotes 

Now, Hamilton’ s 

T- :, -- 

the density per 

principle reads 

r% s Jt. 

unit area. 

[ T-V] Ai=0 

(6) 

(7) 

22 



(8) 

The variation of the first integral of V is given by Timoshenko and Woinowsky- 
Kriegerl’s P* 23 . 

where 8 is defined in Figure 1 as the angle between the normal& and the 
x-axis. Similarly for the second integral of V 

But 
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and 

I 
NV aw& 2!e!!!6w 

I. ar I by a% 
(11) 

)J 
cont- 

so that 

where use has been made of the equilibrium equations for the in-plane loads. The 
second integral in (12) can be converted into a line integral using 

(13) 
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Substitution of (B), (9), (14), and (15) into (7) yields the differential 
equation 

and the natural boundary conditions 

and 

Hence the following boundary conditions apply: 

1) For built-in edges: ah zo 
'iur > 

(1% 
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2) For simply-supported edges: 

bko 
J ( )I 

t-v CW C&+Z C4 hLec0re z +a!! .&i&g +vvhJ=o 
auaj w 1. 

“3) For free edges: and 9: arbitrary, Mu=0 ,Q, et-0 

(21) 

For rectilinear edges parallel to the coordinate axes, these equations can be 
simplified using the following conditions on (J : 

i) Edge parallel to the x-axis:c)=%, case= 0 , sin@=1 

2) Edge parallel to the y-axis: eti 0 , case= 1 , sine=0 

In the question of motion derived above, equation (16), the in-plane loads 
are in general form. They must be determined through the solution of equations 
(1) through (3) before any attempt at a solution to (16) can be made. In this 
report we will consider the following type of loading: 

t4%= - [p,+ ,,%I J hr\, Nrj=o / ‘= Mg J’=O (23) 

That such a state of stress is possible can be seen by substitution in the 
equilibrium equations and the compatibility equations for stress. Such a state 
of stress can be thought as arising in a vertical plate loaded by a uniform 
pressure P1 and gravity with gravitational constate g, as shown in Figure 2. 
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This interpretation, however, 
to deform in its plane. 

involves the assumption that the plate is free 

1 3 , distribut 
lb./ft 

1 body force 

Figure 2 

GRCMRTRYFORRRCTANGULAR PLATES 

With these in-plane loads, equation (16) in the absence of lateral load, q , 
becomes 

In the following section, the corresponding eigenvalue problem is considered. 

III. EIGRNVALUR PROBLEM 

The mode shapes and natural frequencies of the plate are obtained by search- 
ing for eigenvibrations of the form 

(25) 

27 



Equation (24) yields 

and 

v4+ 
(27) 

The last equation 
ing Nowacki(2,)p. 

involves both of the independent variables x and y. Follow- 
206, it can be separated to obtain Cp in the form 

provides Q(Y) satisfies 

where p is constant. 

These conditions are satisfied only by trigonometric functions. Hence, for 
equation (27) to separate, the plate must be simply supported at the edges 
Y = 0 and y = b. This requirement being satisfied, the function +(x) must 
satisfy the equation 

(30) 

which, by changing to the following parameters 

takes the form 

(32) 
. i.e., the same form as the eigenvalue problem for a beam with linearly distri- 
buted axial load. 

This equation has been considered in Part I. Its eigenvalues may be 
computed by numerical methods. The eigenvalues of the plate can then be 
obtained from the knowledge of hi and ~4 . 
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IV. CONCLUDING REMARKS 

a) Extension to More General Distributed Load. 

The foregoing analysis has assumed that the uniformly distributed in- 
plane loading arises solely from the distributed weight of a vertical plate. 
Such a loading configuration could result from any in-plane tractive load 
(friction, for example) imposed on the surface of the plate. For such an ap- 
plication the term mg in eq. (24) should be replaced by a suitable expression 
representing the total in-plane uniformly distributed tractive load. 

b) Summary. 

The eigenvalue problem for a uniform rectangular plate free to deform in 
its plane, and subjected to a linearly varying in-piane load has been reduced 
to that of a uniform beam carrying a linearly varying axial load when the 
plate is simply supported along the edges parallel to the load. The type of 
support along the other edges is .arbitrary. Solutions will be presented in a . 
future report for the cases where the edges perpendicular to the load are either 
simply supported or clamped. 
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TECHNICAL NOTES: Information less broad in scope but nevertheless 
of importance as a contribution to existing knowledge. 

” 
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and initially published in the form of jpurnal articles. 

SPECIAL PUBLICATIONS: Information derived from or of value to 
NASA activities but not necessarily reporting the results ,of individual 
NASA-programmed scientific efforts. Publications include conference 
proceedings, monographs, data compilations, handbooks, sourcebooks, 
and special bibliographies. 

Details on the availability oi these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

Washington, D.C. 20546 


